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Stability of parallel flow in a parallel magnetic field 
at small magnetic Reynolds numbers 

By P. G. DRAZIN 
Department of Mathematics, Massachusetts Institute of Technology 

(Received 1 September 1959) 

The hydromagnetic stability of a basic two-dimensional parallel flow of an 
incompressible conducting fluid in a uniform magnetic field parallel to the flow is 
considered. By use of the generalization of the Orr-Sommerfeld equation for an 
electrically conducting fluid, it  is shown that any given small wave disturbance 
can be stabilized by a sufficiently strong magnetic field if the Reynolds number is 
finite and the magnetic Reynolds number small. 

Stability of velocity profiles with a point of inflexion at  small magnetic 
Reynolds number and infinite Reynolds number is considered in detail. Per- 
turbation methods are developed to find stability characteristics in two cases, 
when the magnetic field is weak, and when the disturbance is a long wave. These 
methods are applied to the jet and the half-jet, which are both found to be un- 
stable to long-wave disturbances, however strong the magnetic field. Nonethe- 
less, these two flows can be stabilized for any given harmonic disturbance of 
finite wavelength. The analysis of the jet reveals the surprising result that the 
magnetic field makes inviscid long-wave disturbances more unstable. 

~ ~~~~ 

1. Introduction 
Michael (1953) and Stuart (1954) were the first to consider the stability of a steady 
two-dimensional parallel flow of a viscous incompressible conducting fluid in 
a uniform magnetic field parallel to the flow. They supposed that the flow was 
bounded by perfectly conducting walls at  y = yl, yz (where y1 and/or y2 may be 
infinite if the flow is unbounded) and took a basic parallel flow with variable 
velocity 

and a uniform parallel magnetic field 

u = (V(Y), 090) (Y1 G Y G Yz) 

Ha = (Ha, 090) 

in Cartesian components. Following the usual methods of hydrodynamic stability, 
they substituted the velocity and magnetic field of the basic flow together with 
a small disturbance (denoted by primes), say 

u = (u, v, w) = u + u'(x, t )  

H = (Hz, H,, H,) = Ha + h'(x, t ) ,  
(1.1) 

and (1.2) 

into the hydromagnetic equations for a homogeneous incompressible fluid of 
density p, kinematic viscosity v, magnetic permeability ,u, electrical conductivity 
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CT and magnetic diffusivity h = 1 / 4 n p ~ ~ .  Then they linearized the equations by 
neglecting products of the primed quantities. 

Squire’s theorem that two-dimensional small disturbances of a parallel flow are 
the least stable is valid €or a conducting fluid (Michael 1953; Stuart 1954). 
Therefore, in a proposed search for a sufficient condition €or stability, only two- 
dimensional disturbances need be considered. Thus w, h: and a/& can be put equal 
to zero. Now the continuity equation V.u‘ = 0 and the Maxwell equation 
V.  h‘ = 0 of the disturbance imply that there exist functions @’, XI such that 

ur  = -ay /ay ,  v i  = a$-,lax, (1-3) 

and h; = -axflay, h; = axflax. (1.4) 

Assume that small disturbances can be resolved into dynamically independent 
wave-components by putting 

@’ = #(y) exp (ia(x - ct)},  x’ = B(y) exp {ia(x- ct)}  (1.5) 

for some complex velocity c = c, + ici and positive wave-number a. This gives 
a wave with phase velocity c, and logarithmic growth rate aci; so the motion is 
stable, neutrally stable or unstable according as ci is respectively less than, equal 
to, or greater than zero. 

If the velocity distribution U(y) has velocity scale V and its space variation 
has length scale L, we can define dimensionless parameters €or the flow, the first 
being the Reynolds number 

R = VL/v.  (1.6) 

Analogously, we define the magnetic Reynolds number 

R, 3 VLlh. (1.7) 

This measures the ratio of terms representing convection and diffusion of the 
magnetic lines of force in the fluid. The ratio of magnetic to kinetic energy is 
measured by 

S = (pH;/8n)/&pV2; 

S is also the square of the Alfvh velocity divided by V2.  It is useful to define 
a further dimensionless parameter 

N = SR, = pH;L/4~phV. (1.9) 

By elimination of the hydrodynamic pressure, and by division of the appro- 
priate dimensions out of the quantities y, U ,  c, a, # and 8, it can be shown that the 
linearized hydromagnetic equations lead to 

(1.10) 

i 
aR and (v-c)(~”-a2$)-UU”#-SX(B”-a28) = - - (p -2a2$”+a4$) ,  (1.11) 

where primes now denote differentiation with respect to y. These equations were 
9-2 
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derived independently by Michael (1953) and Stuart (1954). On elimination of rj5 
it  at once follows that 

i 
__ (D2 - C C ~ ) ~  8+ ( U  - C) (D2- 0 1 ~ ) ~  8 + 4U'(D2 - a2)8' 
aR,, + 2 ~ " ( ~ 2 - a 2 ) ~ + 4 ~ ' 1 e " + 4 ~ 1 ' 1 e ' +  uiv 

R 
- - - - {( U - C )  (D2-a2) - U"> (D2 - a2) 8 

Rni 
+ kR(( U - c ) ~  - S )  ( 0 2 -  a') 8 + 2iaRU'( U - C) 8', (1.19) 

where D = d/dy. 

The stability characteristics can be found by solving the sixth-order differen- 
tial equation (1.12) subject to the six appropriate boundary conditions. These are 

a$J = 0 = 4' (Y = Y1,YZ). 

which makes the velocity vanish at fixed walls, and 

(1.13) 

a8 = 0 (Y = Y17YZ)l (1.14) 

which makes the normal component of the magnetic field vanish at perfectly 
conducting walls. 

For given values of a, R, R, and S we can (in principle) find the eigenvalue c. If 
ci < 0 we conclude that the disturbance of wave-number a is stable for the given 
R, R, and S. In  practice it is convenient to put ci = 0 and look for the resultant 
relation between a, R, R, and S. 

From equations (1.10) and (1.11) Stuart (1954) deduced the power equation of 
the disturbance 

( V x  h')2dx. (1.15) 

This equation is a generalization of the Lorentz power equation for a non- 
conducting fluid. The first integral is the sum of the kinetic and magnetic energies 
of the disturbance, the second the rate of energy transfer from the basic parallel 
flow, the third the rate of viscous dissipation and the fourth the rate of ohmic 
dissipation of magnetic energy. 

To see typical orders of magnitude of the dimensionless parameters, consider 
the following approximate values measured in a recent laboratory experiment 
(Murgatroyd 1953) on channel flow of mercury: 

h = 8 x 103cm2/sec, v = 10-3cm2/sec, p = 14g/cm3, 

V = 10cm/sec, L = 1 cm, H,, = lO3g. 

These give parameters 

R M 104, R,, z 10-3, N 10-1. 

The value Rn, M 10-3 suggests the approximation R, < 1 to simplify the for- 
midable eigenvalue problem we are facing. Accordingly, let us balance the 
magnetic diffusion terms on the right-hand side of equation (1.10) with the 
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convection of the basic magnetic field by the disturbance, i.e. make the 

(1.16) approximation 
Of' - a20 = - iaR,$. 

This is equivalent to taking the first term of a power series of the form 
m 

n = l  
0 = 2 R%0n(yja,R,N,c), 

which is a regular expansion because RM is the coeficient of terms other than the 
one of highest order in the differential equation (1.12). We shall suppose that 
N remains finite and non-zero as Rzw -+ 0, which requires H, -+ a. Then 0 can be 
eliminated from equation (1.11) by use of equation (1.16) to yield 

i 
aR 

( U - c ) ( $ " - a 2 # ) -  U"$+iaN$ = --(#'"-2a2#"+a4#). (1.17) 

This equation was first derived by Stuart (1954). It reduces to the Orr-Sommer- 
feld equation in the absence of a magnetic field. The convection of the magnetic 
field of the disturbance by the basic flow being neglected, the magnetic and 
velocity fields of the disturbance have been separated, and it is only necessary to 
solve equation (1.17) subject to the boundary conditions ( 1.13) in order to find C. 

0 is of order RM and need not be found from equation (1.16) after $ has been 
found. However, the basic magnetic field, being infinite as R,, -+ 0, affects the 
velocity of the disturbance and requires the addition of the term iaN$ in the 
Orr-Sommerfeld equation. 

The assumption R,, = vR/h < 1 also requires 

R <  h/v  (=  6 x  lo6 for Hg). 

In spite of this limitation of the range of Reynolds number, we shall consider later 
the inviscid form of the Stuart equation (1.17), namely 

( U - c )  ($"-a2$)- U"$+iaN$ = 0, (1.18) 

.$ = 0 (Y = Y1,Yz) (1.19) 

together with the inviscid boundary conditions 

representing zero normal velocity at the walls. The justification is that the 
solution of the inviscid equation (1.18) will give an asymptotic solution to the 
Stuart equation (1.17) for large aR, as the Rayleigh equation gives one to the 
Orr-Sommerfeld equation. In  many cases this asymptotic solution should not 
differ much from the viscous solution in the range of chief practical interest, 
where R is as large as 104. Our knowledge of equation (1.18) for N = 0 suggests 
that these cases occur when the velocity profile has a point of inflexion, i.e. when 
the inviscid flow as well as the viscous flow is unstable. Also Stuart (1954) 
adapted Lin's method combining the 'inviscid' and 'viscous' solutions of the 
Orr-Sommerfeld equation, so the study of inviscid hydromagnetic stability is at  
least an important preliminary to the viscous problem. 

It is to be expected that the effect of the longitudinal primary magnetic field is 
generally stabilizing. This idea is made precise and it is shown ( 0  2) that, for 

R,, = 0, N3 > 27R/{256a2(max. U ' ) 3  
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is a sufficient condition for stability. After $ 2 we continue to take RAT = 0, but 
take R = co as well. 

For velocity profiles with a point of inflexion there is a neutrally stable solution 
of the Rayleigh equation. It is of the form q5 = g58 (y), a2 = at $. 0, c = U,, where 
V, is the value of U at the point of inflexion. The perturbation for small N of this 
known solution for N = 0 is considered in 5 3. A general equation of the tangent 
to the curve of neutral stability (i.e. the curve ci (a2, N) = 0) at (a", 0) in the 
(a2, N)-plane is found. The tangent is inclined downward, so the local effect of the 
magnetic field is stabilizing. 

In  $ 4  an approach to the problem for small values of the wave-number is 
described. 

The analysis of $$ 3, 4 gives a rough idea of the relation between a and N for 
each value of ci, and for cg = 0 in particular. This relation could be plotted as 
curves of constant ci in the (a, N)-plane. We can find the values of ci on the a-axis 
by solution of the Rayleigh equation. We can find the values near (a8,0) from 5 3, 
and for small a from $4. This may lead to our chief aim-to find if there is some 
critical value of N above which the flow is stable to disturbances of all wave- 
numbers. The solution for small a may show that this critical value does not 
exist, i.e. that for any value of N there exists some a for which the flow is unstable. 
If N has a critical value, it may be found by an explicit solution or by computation. 

The ideas of $5  3, 4 are applied in $5  5 , 6  to two important types of velocity 
profile with a point of inflexion and with Y = 0. Helmholtz flow (unbounded 
uniform parallel flow with a single discontinuity of velocity) is found ($  5) to be 
unstable for all values of the magnetic field a t  RM = 0. Thus there is no critical 
value of N. However, the magnetic field makes the flow less unstable. Helmholtz 
flow is used to approximate the half-jet (with U = tanh y, say), which is shown to 
be unstable similarly. 

Also a broken-line velocity profile is used ($  6) to approximate the jet (with 
U = sechzy). This flow is unstable however large the magnetic field. For small 
wave-numbers it is found that the magnetic field increaaes the instability. This 
surprising result is discussed after the general conclusions of 9 7 .  

2. SufEcient conditions for stability 
Some fundamental stability characteristics of the viscous flow can be found by 

generalizing Synge's (1938) sufficient conditions for stability of parallel flow. We 
adapt this method for the OrrSommerfeld equation (see also Lessen 1952) to the 
Stuart equation. Thus the power equation (1.15) for RM = 0 can be written, after 
use of (1.16), as 

I: + 2a21: + a41i = - #iaR(Q - Q*) - aRci(I: + a21i) - a2RNI& (2.1) 

Q = j " { U  1$'I2+(a2U+ U") 1$I2}dy+ (2.3) 
Y1 

and an asterisk denotes a complex conjugate. 
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(2.4) 

Therefore the flow is always stable if 

a~ 2 max. ( S y * ~ i ~ ~ ( ~ ~ ~ * - ~ ~ * ~ ) d y / ~ ’ *  Y1 1~12dy), 

the maximum being with respect to any class of functions including the eigen- 
functions of the inviscid equation (1.18). Unfortunately equation (1.18) has 
a singularity where U = c and is not complex self-adjoint, and so does not appear 
to have a variational principle suitable for computation of eigenvalues. 

Returning to Synge’s method, we can deduce from equation (2.1) that a suffi- 
cient condition for stability (ci x 0) is 

Ul 

qaR < min. { ( I ;  + 2a212, + a2(a2 + R N )  I i ) / IoI l ) ,  (2.5) 

where q 3 max. U‘, (2.6) 

because 4 I Q - Q * ]  G f?IOIl 

by Schwan’s inequality. To exploit inequality (2.5) further, Synge noted that 

for all real [, 7. We must add the proviso that y2 - y1 < 00. If one or both of the 
boundaries are at  inhi ty ,  we can use the modifications of Lessen (1952), whose 
strongest result comes with g = 0. The cases of bounded and unbounded flow can 
be combined by putting 6 = 2E/(y2 - yl), which must be zero for unbounded flow. 
Therefore, on integration of the inequality (2.7) by parts and on further use of 
Schwarz’s inequality, 

Combination of the inequalities (2 .5)  and (2 .8)  shows that the motion is stable 
provided 

721; > (67 - E2+ 27) 1; + (6 - 1 )  1;. (2.8) 

r2aRci(1; + < q2qaRIoIl - 1 3 2 ~ ~ 2 7 2  + 67 - E2 + 27) 
- 1i(q2a4 + a2r2RN + (- 1). (2.9) 

Stability is assured if the right-hand side is negative definite, i.e. if 

(72qaR)2 < 4(2a2y2 + (7 - t2 + 27) (a4r2 + a2RNy2 + 6 - 1) (2.10) 

(2.11) 

for all real 6, 7 satisfying 

2a2y2 + [7 - 6 2 +  27 > 0, a472 +a2RNy2 + 6 -  1 > 0.  

Note that the inequality (2.10) is weakened if we put N = 0. 
For bounded flows we can get 

(qR)2 < 8(a2+ 1 )  (aZ+RN) 

(qR)2 < (2a2 + 1 )  (4a4+ 4a2RN + l)/a2 
when 5 = 1 = 7, and 

(2.12) 

(2.13) 
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when 6 = 2 = 7. These two inequalities limit the region of possible instability in 
the (a, R)-plane for each value of N ,  inequality (2.12) showing that the flow is 
stable if R < 8N/q2. 

For bounded or unbounded flows we can put 5 = 0 , ~  = (3 /RN)*/a  in inequality 

N3 > 27R/256a2q4. (2.14) 
(2.10) to get 

Thus, given any finite R and a + 0, we can find N such that the disturbance is 
stable. 

3. Perturbation of the neutral solution of Rayleigh’s equation 
Rayleigh proved that, if the equation 

# = O  (3 .1)  #// - $# - - U“ 
U-C 

has a neutral eigensolution (i.e. one with an eigenvalue ci = O ) ,  then 

U”(ys) = 0 (3 .5)  

at some point ys of the flow. Later Tollmien showed that when (3.2) is satisfied 
there exists an eigensolution 

$4 = #,, c = u, = U(y,), a = a, > 0, (3.3) 

for certain functions U(y), where #s is real. A perturbation of this neutral 
oscillation with non-zero wave-number (carried out first by Tollmien, and later 
by Lin) establishes the existence of amplified oscillations with slightly different 
wave-number. Lin (1955) has given the following formula, which we shall use: 

where ’$ denotes the principal value of the integral and 

K being positive for the profiles under consideration. The sign of the imaginary 
term in (3.4) depends on taking the limit ci + 0 through positive values in order to 
get the correct inviscid limit of the viscous solution. 

Our aim is to perturb the neutral solution (3.3) in order to find the stability 
when the magnetic field is weak. So use? the Taylor series 

(3 .6)  

the derivatives all being evaluated a t  a = a,, N = 0. Then a neutral disturbance 
with a =# a,, N =t= 0 must be such that 

We shall now find ac/’(aN) and combine it with the relation (3.4) for ac/aaz=a,, iv=o. 

t This method is analogous t o  that for large Reynolds number used by Lessen & Fox 
(1955). 
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Subtract the product of 4, and the equation 

from the product of $ and the equation 
U 'I 4:-a:A-~-4, = 0. (3.9) 

Then, on integration between the boundaries, we obtain 

On taking the limit c --f V,  such that ci -+ 0 through positive values, it can be 
shown that 

Combination of equations (3.4) and (3.11) with the limit (3.7) gives the tangent to 
the curve of neutral stability in the (a2, N)-plane at the point (a:, 0) as 

In cases of interest we shall find that these integrals are positive or zero, so that 
a2 decreases from a: as N increases from zero. A disturbance with wave-number 
a < a, is unstable when N = 0 and, it now appears, is neutral for some N > 0; 
thus the effect of a small magnetic field is stabilizing. 

4. Solution for small wave-numbers 

nearly parallel to the basic flow because 
When a is small the disturbance is a long wave, and the disturbance velocity is 

v' = iaq5exp {ia(z-ct)}  -+ 0 as a -+ 0. 

On the large scale of a long wave the detailed structure of the velocity profile is 
unimportant in determining the stability characteristics. This property in the 
absence of a magnetic field is illustrated by a comparison, made by Carrier (cf. 
Esch 1957), of the stability properties of various forms of the velocity profile of 
the half-jet. He showed that the three unbounded profles 

2erfy- 1 

have the same inviscid eigenvalues (c +- ~f: i) as a -+ 0. In  fact the velocity profiles 
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of a jet have similar stability characteristics (c - & at i ,  i- (a/3)6i, & (2a/3)$ i, 
respectively) ; t ~  a -+ 0. 

The addition of the magnetic field does not affect any term involving a deriva- 
tive of U in the inviscid equation (1.18). Therefore, in looking for the stability of 
the half-jet and jet to long-wave disturbances, we may use the simple first profiles 
of (4.1) and (4.2) rather than the complicated third profiles. Other flows can be 
approached in this way, as first demonstrated by Rayleigh (1945). 

5. The half-jet 
Consider the velocity profile 

u = YllYl (a > Y > -a) (5.1) 

as a limit of the smoothly varying profile of the half-jet. This case has been 
treated by Michael (1955) for R,, = 00 and by Nisbet (1960) for a two-fluid model 
for all values of RLzl. 

There is a discontinuity of the solution at y = 0. As with ordinary Helmholtz 
instability (cf. Rayleigh 1945), the condition that a particle stays in the interface 

y = Yo exp {ia(z - c t ) }  

to first order of the small disturbance. Therefore q5 / (  U - c )  is continuous at y = 0. 
is yo = -{q5/(U-C)}u=o 

From equation ( 1.18) 

[( U - C )  q57 - U'q5y-, = {a2( U - C )  - i d }  $ dq. L 
We are supposing that the smoothly varying profile tends to the broken-line 
profile (5.1), during which limit the integrand on the right-hand side is bounded. 
On letting 8 -+ 0, it follows that ( U - c )  4'- U'q5 is continuous at y = 0. This 
condition could be alternatively proved (cf. Rayleigh 1945) by the continuity of 
the hydrodynamic pressure across the interface. 

For the velocity distribution (5.1) 

Now 
(f l-c)(q5"--a2q5)+iOCNq5 = 0 ( + y  > 0). 

a $ + O  a0 y+&m, 
because the disturbance must die away at infinity. Therefore 

where the square-roots are chosen to have positive real parts. The continuity of 
q5 / (  U - c )  and ( U - c)  q5' - U'$ at y = 0 implies that (U - c)% is continuous 
there; whence it can be seen from the solution (5.3) that the eigenvalue relation is 

(5.4) 

(5.5) 

(1 - c)2 [a2 - i d / (  1 - C ) ] +  + (1 + c)2 [a2 + i d / (  1 + C)]*  = 0, 

f ( c )  E - ic( 1 + c2) + ( N / k )  (1 + 3-52) = 0. 

c / i  -m - 1  - 1/3+ 0 1/34 1 +co 

i.e. 

We can tabulate the key points of this cubic on the imaginary axis as follows 

f +m -N/2a -2/3# N/4a 213% -N/2a --oo 
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It can be seen that all three roots cl, c2, c3 are pure imaginary, with 

--co < cil < - 1, - 1/34 < ci2 < 0, 1/34 < ci3 < 1. 
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If N = 0, ci = k 1 or 0. The roots c = + i  are those found for Helmholtz 
instability with no magnetic field. The other root c2 = 0 is inadmissible because it 
comes from implicitly using a square-root with negative real part after squaring 
equation (5.4). 

If a/N -+ 0, then c -+ k i/3* or - 3iN/4a. Discarding the root c2, we get 

c N i/33 or -3iN/4a. (5.6) 

In  all cases the flow is unstable, because ci3 > 0. As N increases from zero to 
infinity, ci3 decreases from 1 to 3-4. Thus the magnetic field makes the flow less 
unstable. 

(5-7) 

as a smoothly varying representation of the velocity profile of the half-jet. The 
neutral eigensolution of the Rayleigh equation is then (Curle 1956) 

We can take 
U = tanhy (00 > y > -a) 

= sech y, as = 1, c = 0. (5 .8 )  

Therefore yx = 0, = 1, K = 2 secli2 y and the analysis of § 3 gives 

N - 2( 1 - a2))ir (5.9) 

as a -+ 1 on the curve of neutral stability. 
The result 

c-+3-*i or -$iN/a as a+O (5.10) 

for Helmholtz flow has been shown in $ 4  to apply to the half-jet. This can be 
laboriously verified by use of the second velocity profde (4.1): In all cases (5.10) 
holds, showing that the half-jet is unstable, however strong the magnetic field. 

6. The jet 
The velocity of the broken-line jet 

is an even function of y. Therefore the even and odd parts of (p are separable in 
equation (1.18) and can satisfy the boundary conditions separately. We shall 
consider even $ (corresponding to an antisymmetric disturbance) only, because 
it can be shown (in the same way as for even q5) that odd $ give rise to weaker 
instability. Therefore, in looking for a sufficient condition for stability, we take 
the even solution of equation (1.18) which satisfies the boundary condition at 
infinity. This solution is defined by 
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Also ( V - C ) ~ $ ' / $  must be continuous at  y = 1, by the interfacial boundary 
conditions. Therefore 

- c2[a2 +iaN/c]) = (1 - c ) ~  [a2 - iaN/(  1 - c)]* tanh [a2 - iaN/(  1 - c)]. (6.3) 

If N = 0, we get Rayleigh's solution with 

c = 1/(1 kicothta)  (6.4) 

and therefore instability for all a. If we fix N $: 0 and let a + 0, it can be shown 

c/(aN)S -+ i) = a(3) + i) , +(-34+i )  or -i. 
that 

The second root is inadmissible because it corresponds to the square-root on the 
left-hand side of equation (6.3) with negative real part, i.e. to an exponentially 
increasing disturbance as y -+ 00. Therefore 

c - -i(aN)) or +(34+i) (aN)+ as a + 0. (6.5) 

The first root is stable (ci < 0)  and must join up with the stable root 
c = l/(l +i[cotha]i) of equation (6.4). But the second root is unstable and 
becomes more unstable as N increases. Thus we have found an unstable solution 
for all values of N, and the flow is therefore unstable. The strange circumstance 
that the magnetic field increases instability is discussed in 5 7. 

The continuous velocity profile of the jet (as found by Bickley-see Savic 1941) 
is U =sech2y 

and the neutral even eigensolution of the Rayleigh equation is 

(6.6) 

$, = sech2 y, a, = 2 ,  c = 2 3' (6.7) 

(00 > y > -a), 

After a little integration and computation, it can be shown that for this case 
equation (3.12) gives 

N = 6.rr(4-a2)/{2.rr2+8l[l+3-~1n(2+3~)][2+3-~1n(2+3~)]} 

= 0*045(4 - a2) (6.8) 

for the tangent to the curve of neutral stability at (4,O) in the (a2, N)-plane. The 
steepness of the gradient of the line indicates a strong stabilizing influence of the 
magnetic field. 

For small a we expect qualitative agreement with the limit (6.5) of c for the 
broken-line jet. That limit can be confirmed by use of the second profile (4.2). 

7. Conclusions 
The results of $5  5 , 6  can be pieced together to give a good picture of the 

inviscid stability characteristics of the half-jet and jet. The solution of the Ray- 
leigh equation gives ci on the a-axis in the (a, N)-plane, and, in particular, it gives 
ci = 0 a t  (a8, 0). The analysis of 5 3 has been used to give the curve of neutral 
stability near (a,, 0). If the curve leaves this point and eventually passes through 
the origin or cuts the N-axis, there will be a critical value of N above which ci < 0 
for all a. In  fact this is not so for the half-jet or jet, since we have shown in $5 5, 6 
that these flows are unstable for small a, however large N is. Now the sufficient 
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condition (2.14) for stability implies that, for given finite R and non-zero a, the 
flow can be stabilized. Therefore, for given a + 0, it can be stabilized at infinite 
Reynolds number by the argument of continuity. In  this way it is deduced that 
the curves of neutral stability for the jet and half-jet have the form shown in 
figure 1, with no critical value of N .  

Finite viscosity and magnetic diffusivity cannot be expected to stabilize long- 
wave disturbances, because the viscous and diffusion terms in the hydromagnetic 
equations involve second derivatives of the disturbance fields. However, there 
are alleviating circumstances that might give stability in practice. First, only 
long waves are unstable, and disturbances of great wavelength are not often 
excited by slight irregularities in an experiment. Secondly, the growth rate 
exp ( q t )  of the disturbance is small, because ci is O(a4) for the jet and O( 1 )  for the 
half-jet as 01.3 0. Therefore unstable disturbances may be carried downstream 
before they have time to grow appreciably. These qualitative ideas indicate that 
jets may be stabilized in practice, the half-jet being more unstable than the jet. 

a 
I 

FIGURE 1. Conjectured form of the curve of neutral stability 
for the jet and half-jet. 

It was found in 5 6 that the jet was unstable, with ci N +(aN)a as a -+ 0, for 
Rm = 0, R = co and finite N =# 0. Therefore, if N is increased, c, increases, i.e. the 
flow becomes more unstable to long-wave disturbances, contrary to our impression 
of the stabilizing tendency of magnetic fields. It should be remembered that this 
result is invalid if N is O(a)  or O( l/a). 

We should really be no more surprised at the creation of instability by the 
magnetic field than that by viscosity (the latter effect being known to occur under 
certain circumstances). In  the complex dynamics of the flow, the magnetic field 
modifies the disturbance so that there is simultaneously magnetic energy dissipa- 
tion and a different energy transfer from the basic flow to the disturbance by the 
Reynolds stress. Indeed, if the magnetic field were only a stabilizing agent, there 
should be an extremal principle for the energy as proof, contrary to the inconclu- 
sive power equation (2.4). 

To verify this interpretation, we may use the power equation to give the rate of 
energy transfer from the basic flow per unit length in the z-direction as 
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where the (dimensionless) Reynolds stress is 

= iia e2zCil($$’* - $‘$*) (7.2) ___ 
(we discount the magnetic Reynolds stress Xhih; because Ih’l = O(R,$) when 
RM is small). 

For the broken-line jet (6. l), 

dU/dy  = 6( - 1) - &( 1) 

in terms of the Dirac &-functions; also the disturbance found in 5 6 is anti-sym- 
metric. Therefore 

Use of discontinuous profiles such as (6.1) leads to ambiguity (for flows with or 
without a magnetic field) because even though $/(U-c) and ( U - c ) $ ’  are 
continuous, (&bf* - $’$*) is discontinuous if ci =t= 0. Thus use of discontinuous 
profiles cannot give precise information on the second-order quantity 7.  However, 
we can find the trend for a smoothly varying profile of the jet U = secha y by 
evaluating 7 on both sides of the discontinuity of the known solution (6.2). 

P =  - 2 (  ~ ) ~ = 1 .  (7.3) 

It can be shown from 5 6 that 
a-l e-2acit ( )y+l = - lD121m{[a2+iaN/c]*} 

- or 

according as y -+ 1 from above or below respectively, for the arbitrary constant D. 
If a -+ 0 for given N + 0, the unstable mode found in 5 6 has c N 3(31+ i) (aN)g. 

Therefore ( 7 ) , + , / [ ( a 4 ~ ) 3  1012exp ((a4~pq-j + - 4 or - 2 .  

On both sides T is negative, so the tendency of the magnetic field is to increase the 
energy of the disturbance, as shown by equation (7.3). 

I am very grateful to Prof. C. C. Lin for helpful advice and criticism throughout 
this work. It has been sponsored in part by the Office of Naval Research under 
contract Nonr 184l( 12) with the Massachusetts Institute of Technology. 
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